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We show that the nearest-neighbor spacing distribution for a model that consists of random points uniformly
distributed on a self-similar fractal is the Brody distribution of random matrix theory. In the usual context of
Hamiltonian systems, the Brody parameter does not have a definite physical meaning, but in the model
considered here, the Brody parameter is actually the fractal dimension. Exploiting this result, we introduce a
new model for a crossover transition between Poisson and Wigner statistics: random points on a continuous
family of self-similar curves with fractal dimensions between 1 and 2. The implications to quantum chaos are
discussed, and a connection to conservative classical chaos is introduced.
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It is well known that the spectral statistics of almost all
quantum systems, whose classical analogs are chaotic, are
described quantitatively by Gaussian ensembles of random
matrices �1–4�. Perhaps less well known is the fact that the
eigenvalue spacing distribution for the Gaussian orthogonal
ensemble of 2�2 random matrices also describes homoge-
neous Poisson point processes in R2 �3�. The nearest-
neighbor spacing distribution �NNSD� of random points uni-
formly distributed on a line is given by

PP�S� = exp�− S� , �1�
and the NNSD of random points uniformly distributed on a
plane is given by �3�

PW�S� =
�

2
S exp�−

�

4
S2� , �2�

which is, in fact, the Wigner distribution of random matrix
theory �RMT� �5�. �In Eqs. �1� and �2�, S is a dimensionless
scaled spacing.� Evidently, random points on a line are un-
correlated, whereas random points on a plane are actually
correlated �in the sense that the points tend to avoid each
other�. Even so, the latter result is reasonable since there is
an additional degree of freedom that allows the points to
spread out. Based on this intuitive interdependence between
“point repulsion” and dimensionality, and in strict analogy to
energy-level statistics, it is tempting to indiscriminately con-
jecture that the nearest-neighbor statistics of random points
on a fractal set with noninteger dimensions between 1 and 2
are described by an intermediate distribution in-between
Poisson and Wigner. In fact, this conjecture turns out to be
correct as we shall demonstrate below.

Our interest in the nearest-neighbor statistics of random
points on fractals was sparked by the provocative results �1�
and �2�, and the prospect that random points on fractals could
be conceptualized as new models of intermediate statistics
�between Poisson and Wigner�. We however are not the first
authors to consider the statistical properties of fractal sets.
Two decades ago, Badii and Politi �6� studied �for com-
pletely different reasons� the nearest-neighbor distance dis-

tribution of random points on a strange attractor. These au-
thors also obtained the probability distribution of nearest-
neighbor distances � among N points chosen randomly and
uniformly on a Cantor set with capacity dimension D0. Inter-
estingly, they noted �quite tersely� that the asymptotic distri-
bution �appropriate for large N� �6�

PBP��,N� = 2D0N�2��D0−1 exp�− N�2��D0� , �3�

could be “recognized as a Brody distribution.” Clearly, Eq.
�3� is not the Brody distribution �7�, but we show that when
the nearest-neighbor distance is rescaled by the mean
nearest-neighbor distance �which is a contrivance familiar to
practitioners of RMT� the result is indeed the Brody distri-
bution. More generally speaking, we show that the Brody
distribution is the NNSD for points selected uniformly at
random from a self-similar set K�Rd with similarity dimen-
sion ds�1, and that the Brody parameter is the (relative)
similarity dimension of K �i.e., ds−1�. �In this paper, d is the
Euclidean space dimension.� The goals of this paper are to
derive this result, to introduce a new model for a Poisson-to-
Wigner crossover transition based on this result, and to ex-
plicate the physical implications. The derivation is simple
and direct; the result itself is far more interesting than its
proof. A discussion of the physical implications is deferred to
the conclusion.

We begin first with the derivation of the spacing distribu-
tion. Suppose that N points of a self-similar set K�Rd are
chosen randomly and uniformly. The probability P�s�ds of
finding the nearest neighbor to a given point at a distance
between s and s+ds is equal to the probability of finding one
of the �N−1� points at a distance between s and s+ds from
the given point and the �N−2� remaining points at a distance
greater than s. Let P�s� denote the probability of finding a
point within a distance s of a given point. The probability of
finding one point at a distance greater than s is then �1
−P�s��, and for �N−2� points, the probabilities are multipli-
cative due to the fact that all points are chosen indepen-
dently. Thus,

P�s�ds = ��1 − P�s���N−2�dP�s� , �4�

where the prefactor �= �N−1� accounts for the fact that the
nearest neighbor could be any one of the �N−1� points �8�,
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and dP�s�=P��s�ds is the probability of finding a point in a
shell with inner and outer radii s and s+ds centered about the
given point. The probability of finding multiple nearest
neighbors is ignored since the probability of such an event is
higher order in ds and is, therefore, insignificant compared to
the probability of finding a single nearest neighbor.

It now remains to specify the probability P�s�. Clearly,
the typical number of neighbors of a given point will vary
more rapidly with distance from that point as the dimension
increases. The probability P�s� is, by definition, the ratio of
the number of points within some prescribed distance to the
total number of points, that is, P�s�=N�s� /N�R�, where R is
the radius of the d-dimensional ball that contains all N
points. The number function N�s� can be directly obtained
from the so-called “mass-radius scaling law” for fractals �see
page 40 of Mandelbrot’s book �9��: M�r�=M�R��r /R�Dm

= �M�R� /RDm�rDm. In this formula, M�r� and M�R� are the
masses contained within balls of radii r and R, respectively,
and Dm is the mass dimension. For regular �i.e. strictly self-
similar� fractals, Dm=ds. It might seem peculiar to speak of
masses here, but it is equivalent to the concept of numbers of
points within balls of a specified radius if an individual
sample point becomes the unit of mass. We can thus equita-
bly think of the above mass law as a “number-radius scaling
law.” So, the probability of finding a point within a distance
s of a given point is governed by the power law

P�s� = Asds, �5�

where the coefficient A=1/Rds, and ds�1 is the similarity
dimension of K. �Note that the probability P�s� is a unitless
number since A has units of 1 / �length�ds.� Therefore, Eq. �4�
becomes

P�s�ds = ��1 − Asds��N−2�Adss
ds−1ds . �6�

Recall that dP�s�=P��s�ds=Adss
ds−1ds. It is straightforward

to verify that the probability density P�s� is already normal-
ized �i.e., �0

RP�s�ds=1�. We could now consider the large N
limit of Eq. �6�, and in doing so, we can invoke the so-called
Poisson approximation �10�, and this gives the asymptotic
probability density

P�s� = NAdss
ds−1 exp�− NAsds� as N → � . �7�

Equation �7� is essentially the distribution obtained by Badii
and Politi in 1985 �c.f. Eq. �3� and note that D0 in their
formula is equivalent to ds in Eq. �7��.

Next, we calculate the mean spacing s̄=�0
RsP�s�ds:

s̄ =
�N − 1�ds

Rds
�

0

R

sds	1 − � s

R�ds
�N−2�

ds

= R�N − 1�ds�
0

1

uds�1 − uds��N−2�du

= R�N − 1��
0

1

v1/ds�1 − v��N−2�dv

= R�N − 1�B�1 + 1/ds,N − 1�

= R��N���1 + 1/ds�/��N + 1/ds� .

In the second line, we have made a change of variables u

=s /R, and in the third line, we have made one further
change of variables v=uds. The integral in the third line we
recognize as the beta function B�� ,	� with parameters �
=1+1/ds and 	=N−1, and this then gives the fourth line.
We then used the usual relation between the gamma and beta
functions to arrive at the fifth line. It can be shown that the
term

��N�
��N + 1/ds�

=
1

N1/ds
	1 + O� 1

N
�
 as N → � , �8�

and therefore, the asymptotic mean nearest-neighbor spacing
is, to leading order,

s̄ =
R

N1/ds
��ds + 1

ds
� as N → � . �9�

Introducing the rescaled spacing S=s / s̄ and taking the limit
N→�, the distribution P�s� in Eq. �7� becomes the distribu-
tion

PB�S;q = ds − 1� = 
dsS
ds−1 exp�− 
Sds� , �10a�

where


 = 	��ds + 1

ds
�
ds

. �10b�

�Notice that the rescaling of s by s̄ was doubly beneficial;
both explicit dependences on R and N in Eq. �7� have been
removed.� The distribution PB�S ;q� �Eq. �10�� is, in fact, the
Brody distribution �7� with Brody parameter q equal to ds
−1 �11�. We refer to the number ds−1 as the relative simi-
larity dimension of K since this number is the difference
between the similarity dimension of K and the similarity di-
mension of a line �the simplest self-similar object� which is
equal to 1. Equation �10� is valid for random points on any
self-similar subset of Rd with similarity dimension ds�1. If
K is a classical �nonfractal� self-similar set �i.e., a
d-dimensional cube�, then ds=d and Eq. �10� reduces to the
NNSD for a homogeneous Poisson point process in Rd �see
Ref. �3��.

In studies of quantum chaos, the Brody distribution has
sometimes been used �as a purely phenomenological distri-
bution� to describe the nearest-neighbor energy-level statis-
tics of quantum systems that undergo a direct transition from
Poisson-like to Wigner-like statistics as a system parameter
is varied. �A classic example is the diamagnetic Kepler sys-
tem �12�.� In the present context, a Poisson-to-Wigner tran-
sition can be realized by considering point processes on a
family of self-similar sets whose dimension ranges between
1 and 2 as some set parameter is varied. In actual fact, we are
introducing a new model �that does not involve random ma-
trices� for a Poisson-to-Wigner crossover transition, and this
model is special since the intermediate statistics are de-
scribed exactly by the Brody distribution. As a concrete ex-
ample, we now study point processes on the family of Koch
fractals in R2. These fractals can be thought of as the attrac-
tors of a one-parameter family of iterated function systems
�IFSs�. The similarity transformations defining the IFS in-
volve a rotation which is conveniently parametrized by the
angle �. When �=0, the attractor is a line, and when
�=� /2, the attractor is the famous Sierpinski-Knopp plane-
filling curve, whose image is a solid isosceles triangle in
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R2 �13�. For intermediate values �i.e. �� �0,� /2��, the at-
tractors are various self-similar curves of prescribed dimen-
sion ds� �1,2�. The nearest-neighbor statistics of the random
points undergo a continuous transition from Poisson to
Wigner statistics �see Fig. 1� as the self-similar set continu-
ously deforms from a line to a plane-filling curve �i.e., as the
rotation angle � varies between 0 and � /2�.

For clarity, we mention some pertinent numerical details.
Random points on these fractals were selected using the ran-
dom iteration algorithm �RIA� �14�. The distance between a
given point xi and its nearest neighbor is defined �using the
Euclidean metric� by si=min���xi−xj�2+ �yi−yj�2
 for i , j
=1, . . . ,N �j� i�. Although �si
 define a set of spacings, the
NNSD is actually defined in terms of the scaled spacings
Si=si / s̄, where s̄= �1/N��i=1

N si, is the �numerically calcu-
lated� mean nearest-neighbor spacing. We constructed the
histograms by binning all values of Si and then normalizing
the area under the histogram to unity. Each histogram was
constructed from one sample of N=20 000 random points.

We mention here that by using all of the points selected by
the RIA in the statistical analysis, we introduce some error
due to finite-size or edge effects. These errors are statistically
insignificant as long as N is sufficiently large �see Eq. �9��.
Although not absolutely necessary, we use the Levenberg-
Marquardt method �15� to determine the numerical value of
the parameter ds that gives the optimal fit of the Brody dis-
tribution PB�S ;ds−1� to the histograms. This number df can
then be immediately compared to the theoretical value. The
purpose of this procedure is to test how accurately the Brody
distribution �Eq. �10�� reproduces the histogram data ob-
tained from particular realizations of the model. Of course,
each realization �in general� yields a unique histogram
�and hence a unique df�, and so it is more informative to
average over several �say n� realizations and subsequently

define df = d̄f ±�, where d̄f is the average df value obtained
from the n realizations and � is the standard deviation. The

percentage error �denoted by 
� of d̄f �obtained from n=10
independent realizations� relative to ds is typically under 1%.
We have, in fact, studied point processes on many of the
well-known classical fractals in R2, R3, and R4 �16�, and in
almost all cases the accuracy is comparable.

The nearest-neighbor energy-level statistics of some
quantum systems execute a Poisson-to-Wigner transition as
the underlying classical dynamics monotonically change
from being completely integrable to completely chaotic. One
example is the family of Robnik billiards �17�. A monotonic
transition between integrabililty and chaos is, however, quite
exceptional. More typically, the degree of “chaoticity” of the
classical dynamics �as measured by the volume fraction of
phase space filled with chaotic trajectories� changes in a
complicated way as a system parameter is varied monotoni-
cally, and so the energy-level statistics will not undergo a
direct transition from Poisson to Wigner. For example, the
energy-level statistics of the hydrogen atom in a van der
Waals potential undergo a Wigner-Poisson-Brody-Poisson–
Brody-Poisson-Wigner transition as the appropriate system
parameter is monotonically varied in a specified range �18�.
Regardless, in the intermediate regime between integrability
and hard chaos, the Brody distribution �albeit a pure sur-
misal� has often been found to be a good delineation of the
energy-level spacing histogram. There are, in fact, systems
for which the statistical confidence is high �an example is the
ripple billiard �19��. This is not to say the Brody distribution
is now established as a distribution that quantitatively de-
scribes energy-level statistics in the intermediate regime, but
rather that after 30 years of pervasive use with considerable
success, the Brody distribution has garnered an undeniable
phenomenological significance. �Of course, other distribu-
tions have been proposed and used to interpolate between the
Poisson and Wigner limits; we cite here a few of the more
popular distributions �20–24�. These efforts cannot be disre-
garded, but they are not directly relevant to the present dis-
cussion.� Given our present result and the phenomenological
status of the Brody distribution in studies of quantum chaos,
there is a profound implication that transpires: Phenomeno-
logically, the energy levels of a typical time-reversal invari-
ant quantum system, whose dynamics in the classical limit
are mixed, have the same nearest-neighbor statistics as ran-

FIG. 1. A crossover transition between Poisson and Wigner sta-
tistics resulting from point processes on the family of Koch fractals
in R2. The left panel shows random points on several fractals that
belong to the family �each one specified by a particular choice of
the rotation angle ��. The exact similarity dimension ds of each of
the fractals �given to three decimal places� is indicated on each
window. The right panel shows the corresponding NNSD of the

points on each fractal. The numerical data �i.e., df = d̄f ±� and 
�
indicated on each window are as described in the text. The dotted,
dashed, and solid curves are the distributions PP�S�, PW�S�, and

PB�S ; d̄f −1�, respectively.
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dom points on a fractal with dimension in-between 1 and 2.
This phenomenological corollary, together with analogous
corollaries in the limiting cases of integrability �Eq. �1�� and
hard chaos �Eq. �2��, offer a new phenomenology for quan-
tum chaos: the nearest-neighbor energy-level statistics of a
typical time-reversal invariant quantum Hamiltonian follow
the statistics of �i� random points on a �one-dimensional� line
if the classical limit is integrable; �ii� random points on a
�two-dimensional� plane if the classical limit is fully chaotic;
and �iii� random points on a fractal set with dimension in-
between 1 and 2 if the classical limit is mixed.

This phenomenological behavior is quite puzzling. Why
should the energy levels of a quantum Hamiltonian behave
�insofar as their nearest-neighbor statistics� like random
points on a fractal or on a plane? This is a very difficult
question to answer since there is no direct connection be-
tween point processes and quantum mechanics. Point-
process models �PPMs� and random-matrix models are both
stochastic models, but unlike random-matrix models, PPMs
do not inherently contain any of the structure of quantum
mechanics, and so it is difficult to understand why point-
process statistics should have any relation to energy-level
statistics. Surreptitiously, the fundamental link is classical
mechanics. The model of random points on a fractal can be
regarded as a simple stochastic model for chaotic dynamics
on a Poincaré section. In mixed Hamiltonian systems, regu-
lar and chaotic regions are comingled, and the chaotic re-
gions, in particular, are fractal in nature. If we restrict our
scope �at least initially� to two-degree-of-freedom billiard

systems �such as the family of Robnik billiards�, then we
know that the chaotic trajectories explore �in a seemingly
random fashion� a fractal subset of the Poincaré section hav-
ing dimension in-between 1 and 2. Clearly, the NNSD of the
“chaotic points” on the section �corresponding to a chaotic
trajectory� must be Poisson-like in the near-integrable re-
gime, Wigner-like in the chaotic regime, and some interme-
diate distribution in-between Poisson and Wigner in the
mixed regime. The intermediate distribution must also have
built in point repulsion. If random points on fractal sets em-
bedded in R2 really are apt models of Hamiltonian chaos �on
a Poincaré section�, then the intermediate distribution should
be the Brody distribution. If so, then there is an even deeper
corollary: Phenomenologically, the energy levels of a typical
time-reversal invariant quantum system �whose classical ana-
log is nonintegrable� have the same nearest-neighbor statis-
tics as the chaotic trajectories of the underlying classical
Hamiltonian. Of course, we have not explicitly demonstrated
that PPMs correctly describe the nearest-neighbor statistics
of chaotic trajectories, and we can only begin to do so
through numerical experiments. This shall be the subject of a
future paper. The purpose of the above discussion was
merely to introduce the idea of linking PPMs with classical
mechanics, and to outline one of the potential implications.
For the present, we must settle for the less fundamental, but
nonetheless far-reaching precursor �italicized above�.
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